

LE SOLAIRE THERMIQUE

Chauffe-eau et chauffage solaire

Cette solution couvre jusqu'à 85% des besoins en eau chaude sanitaire.

Nos systèmes solaires thermiques permettent d'avoir une énergie gratuite grâce à un matériel de qualité germanique.

Avec plus de 160 configurations différents, tous les système solaires Alliantz sont conçus afin de répondre aux besoins les plus exigeants, que ce soit pour l'eau chaude sanitaire, le chauffage d'une maison, d'une piscine, etc.

LES AVANTAGES

INDÉPENDANCE

Une énergie gratuite, indépendante des fluctuations de prix des énergies fossiles ou nucléaires

ÉCOLOGIQUE

Un CESI Alliantz produit votre eau chaude sanitaire de manière écologique

AIDES FINANCIÈRES

Ces systèmes sont éligibles aux crédits d'impôts, ainsi qu'à toutes les aides et primes régionales

APPROUVÉS

Agréé NF CESI par les plus grands laboratoires de tests

DURABILITÉ

Une longévité supérieure à tous les systèmes traditionnels : capteur garanti 12 ans, ballon 7 ans, garanties uniques sur le marché français

ÉCONOMIES

Un CESI Alliantz couvre jusqu'à 85% des besoins en eau chaude sanitaire, il permet donc d'économiser l'équivalent en énergie

VALORISATION

Une augmentation de la valeur de votre bien immobilier

QUALITÉ

La qualité germanique pour votre confort et votre tranquillité

////// LES KITS SOLAIRES THERMIQUES

Le capteur FK8203

Le capteur solaire Alliantz représente ce qui se fait de mieux en terme de performance, longévité et fonctionnalité. Les différents systèmes de montage permettent de multiples configurations. Il possède un aspect unique grâce au design ondulé du cadre, combiné au verre solaire à cadre noir.

Le kit CESI CHAUFFE-EAU SOLAIRE

- Volume de stockage de 160 à 500L
- Ballon garanti 7 ans
- 1 ou 2 échangeurs
- Entretien facile : trappe d'accès diamètre 180 mm

Le kit chauffage solaire CHAUFFAGE + ECS

- Ballon tank in tank
- Volume total de 550 à 1500L
- Volume ECS de 150 à 250L
- Raccordable sur tout type d'installation chauffage traditionnelle

NARBONNE Siège

implantations en France et bien plus encore sur notre site :

www.alliantz.fr

Votre interlocuteur

Capteur à cadre 7one

FK8003

FK8203 FK8253

AVANTAGES DU PRODUIT

- Aspect unique grâce au design ondulé (Wave) du cadre combiné au verre solaire à cadre noir
- Possibilité d'intégration au bâti
- Utilisable avec tous les types de montages : en surimposition parallèle, intégré au bâti ou sur toit plat
- Précision maximale grâce à sa fabrication sur une ligne de production pilotée par un robot
- Verre solaire de sécurité durci
- Système de fixation facile à monter pour tous les types de toits usuels
- Montage rapide grâce à un concept de fixation intelligent avec système de vis à tête rectangulaire

Capteur à cadre **7one** FK8003

FK8203 | FK8253

POSSIBILITÉS DE MONTAGE DES CAPTEURS

Montage en surimposition, **parallèle** Intégration au bâti

Montage sur support 45°

CARACTÉRISTIQUES TECHNIQUES

	7one – FK8203	7one – FK8253						
Type de capteur	Capte	ur à cadre						
Surface brute [m²]	2,02	2,51						
Surface nette [m²]	1,84	2,31						
Surface d'ouverture [m²]	1,84	2,31						
LxIxh[mm]	1730 x 1170 x 83	2150 x 1170 x 83						
Poids à vide [kg]	31	38						
Capacité [I]	1,56	1,77						
Boîtier du capteur	Profilés	aluminium						
Surface	Alumini	um naturel						
Face arrière	Tôle d'aluminium							
Absorbeur	Aluminium, revêtement sous vide hautement sélectif							
Absorption [%]	95							
Émission[%]	5							
Ø tube capteur [mm]	22							
Ø tube grille hydraulique [mm]	8							
Raccords	4 nus (bag	gue coupante)						
Revêtement verre	Verre solaire de sécurit	é durci 3,2 mm – cadre noir						
Transmission [%]		90						
Isolation thermique	Panneau de lair	ne minérale 40 mm						
Température d'arrêt max.	192 °C dans des d	conditions normales						
Pression de service max.	10	bars						
Fluide caloporteur compatible	Mélange prop	ylène glycol/eau						
Inclinaison admissible	min. 15 °	– max. 75 °						
Conditionnement	Pers	onnalisé						

FIXATION

- Premier fabricant mondial de capteurs solaires thermiques
- Production entièrement automatisée sur 28 000 m²

- Plus de 250 projets de R&D, pour la plupart brevetés
- Entrepôt à rayonnage en hauteur pouvant accueillir 150 000 m² de surface de capteurs
- Garanties produits étendues
- Plus de 25 années d'expérience dans le secteur solaire
- Capacité annuelle de production : 1,6 Mio m² de capteurs

Collector name

Flow rate

Website

Precisely Right.

AUSTRIAN INSTITUTE OF TECHNOLOGY Page 1/2 011-7S1323 F Summary of EN 12975 Test Results, Licence Number 2015-01-27 Issued annex to Solar KEYMARK Certificate Company holding the licence GREENoneTEC Solarindustrie GmbH Country Austria Website www.greenonetec.com Brand (optional) info@greenonetec.com Industriepark St. Veit, Energieplatz 1 E-mail Street, street number 43 4212 28 136-0 Tel/Fax Postal Code / City, province A-9300 St. Veit Flat plate collector - glazed Collector Type (flat plate glazed/un-glazed; evacuate tubular) No Thermal / photo voltaic hybid collector? (PVT collector) Integration in the roof possible ? (manufacturers declaration) No Power output per collector module Aperture area (Aa) $G = 1000 \text{ W/m}^2$ Gross height Gross length Gross area (Tm-Ta 70 K 0 K 10 K 30 K 50 K mm W W W W m² mm mm 1.081 879 FK 8203 N4A Al hs FL 1,91 1.731 1.170 2,03 1.524 1.443 1.269 2,02 1.252 1.064 856 84 1.498 1.421 1.730 1.169 FK 8203 N4A Al hs BF 1,84 1.731 1.170 84 2,03 1.499 1.427 1.269 1.091 893 FK 8203 N2A Al hs BF 1.84 890 1.274 1.088 FK 8203 N2A Al hs FL 1,93 1.729 1.170 84 2,02 1.529 1.447 2,34 1.661 1.476 1.265 1.029 FK 8233 N4A AI hs FL 2,22 2.000 1.170 83 1.744 1.744 1.476 1.265 1.029 2.000 83 2,34 1.661 FK 8233 N2A Al hs FL 2,22 1.170 1.115 1.370 1.171 83 2,52 1.888 1.798 1.598 FK 8253 N4A Al hs FL 2,40 2.150 2,52 1.874 1.795 1.608 1.384 1.124 1.170 84 FK 8253 N2A Al hs FL 2,40 2.150 1.327 1.073 2,31 2.151 1.170 83 2,52 1.864 1.767 1.558 FK 8253 N4A Al hs BF Glazed liquid heating collector - steady state - indoor Performance test method Performance parameters related to aperture area η0 a1 a2 W/(m2K) W/(m2K2) 3,594 Test results - Flow rate and fluid see note 1 0.785 0.014 Bi-directional incidence angle modifiers? Kϑ values are obligatory for 50° 90° 40° 50° 60° 70° 80° Incidence angle modifiers Kθ(θ) Angle 10° 20° 30° 0,00 0,93 κθ(θ) Incidence angle modifier not bidirectional - leave fields blank °C Stagnation temperature - Weather conditions see note 2 Tstg 181 kJ/(m²K) 5.27 ceff = C/Ag Effective thermal capacity Tmax,op °C Max. intende operation temperature - see note 3 1000 kPa pmax,op Max. operation pressure - see note 3 Pressure drop table - for a collector family, the values shall be for the module with highest ΔP per m² aperture area kg/(s m2) Pressure drop, ΔP Pa Link Optional weather data Location AIT Austrian Institute of Technology GmbH **Testing Laboratory** 12.10.2011 / 9.7.2010 / 2.04.00750.1.0-1a-LT / 2.04.00750.1.0-1-QT / 2.04.00750.1.0-2-LT / 2.04.00750.1.0-2-QT / 1.6.2010 / 9.7.2010 / 6.10.2011 / 9.7.2010 / 2.04.00750.1.0-3a-LT / 2.04.00750.1.0-3-QT / 2.04.00834.1.0-1-LT / 2.04.00834.1.0-1-QT / Date of test report 6.10.2011 / 6.10.2011 / Test report id. number 6.10.2011 / 6.10.2011 / 2.04.00834.1.0-2-LT / 2.04.00834.1.0-2-QT / 6.10.2011 / 7.9.2012 / 2.04.00834.1.0-3-LT / 2.04.01038.1.0-LT / 11.10.2012 2 04 01038 1.0-OT 0,06 0.2 During the test GDIF/GTOT was always between and Comments of testing laboratory:

Note 1	Flow rate	0,020 kg/(s m	²) Fluid	Water	AIT Austrian Institute of Technology Gmb
Note 2	Irradiance, G = 100	0 W/m²; Ambient tem	Donau-City-Straße 1 1220 Wien, Austri Taxx3 (n) 50550 pt. Fr. 43 (0) 50550-0		
Note 3	Given by manufact	urer	T#43 [0] 50550 DU F #43 [0] 50550-0 office@ait.ac.at www.ait.ac.a		
					Datasheet version: 4.06, 2014-01-15

Precisely Right.

Page 2/2

Annual collector output based on EN 12975 Test Results, annex to Solar KEYMARK Certificate Licence Number 011-7\$1323 F Issued 27.01.2015

Annual collector output kWh/module														
	Location and collector temperature (Tm)													
Collector name FK 8203 N4A Al hs FL	Athens			Davos			Stockholm			V	/ürzbu	rg		
	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C		
	2.371	1.697	1.107	1.807	1.250	782	1.329	871	525	1.443	940	558		
FK 8203 N4A Al hs BF	2.288	1.637	1.068	1.743	1.206	754	1.282	841	507	1.392	907	538		
FK 8203 N2A AI hs BF	2.288	1.637	1.068	1.743	1.206	754	1.282	841	507	1.392	907	538		
FK 8203 N2A AI hs FL	2.395	1.713	1.118	1.824	1.262	790	1.342	880	530	1.457	950	563		
FK 8233 N4A Al hs FL	2.760	1.975	1.289	2.103	1.455	910	1.547	1.014	611	1.680	1.095	649		
FK 8233 N2A AI hs FL	2.760	1.975	1.289	2.103	1.455	910	1.547	1.014	611	1.680	1.095	649		
FK 8253 N4A AI hs FL	2.989	2.139	1.396	2.277	1.575	986	1.675	1.098	662	1.819	1.185	703		
FK 8253 N2A AI hs FL	2.986	2.137	1.395	2.275	1.574	985	1.674	1.097	662	1.818	1.184	702		
FK 8253 N4A AI hs BF	2.872	2.055	1.341	2.188	1.514	947	1.610	1.055	636	1.748	1.139	675		

Collector mounting: Fixed or tracking

Fixed; slope = latitude - 15° (rounded to nearest 5°)

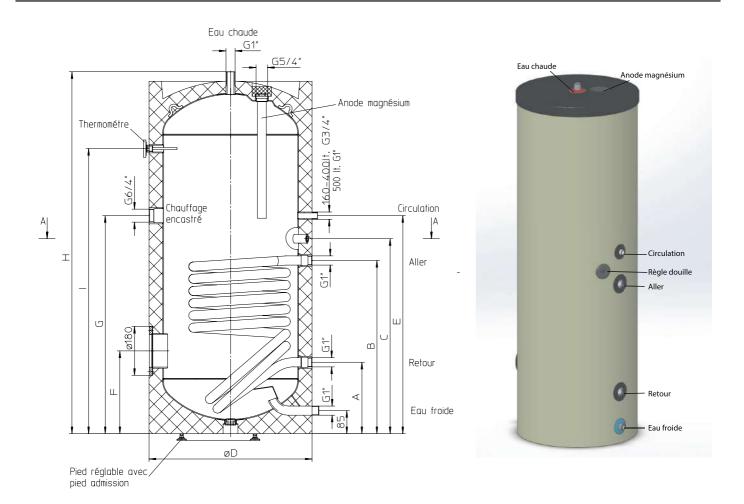
Overview of locations								
Location	Latitude °	Gtot kWh/m²	Ta °C	Collector orientation or tracking mode				
Athens	38	1.765	18,5	South, 25°				
Davos	47	1.714	3,2	South, 30°				
Stockholm	59	1.166	7,5	South, 45°				
Würzburg	50	1.244	9,0	South, 35°				

Gtot	Annual total irradiation on collector plane	kWh/m²
Та	Mean annual ambient air temperature	°C
Tm	Constant collector operating temperature (mean of in- and outlet temperatures)	°C

The calculation of the annual collector performance is performed with the official Solar Keymark spreadsheet tool ScenoCalc. The collector output is calculated hour by hour according to the efficiency parameters from the Keymark test using constant collector operating temperature (Tm). A detailed description of the calculations is available at http://www.sp.se/en/index/services/solar/ScenoCalc/Sidor/default.aspx.

DIN CERTCO • Alboinstraße 56 • 12103 Berlin, Germany
Tel: +49 30 7562-1131 • Fax: +49 30 7562-1141 • E-Mail: info@dincertco.de • www.dincertco.de

Datasheet version: 4.06, 2014-01-15 ScenoCalc version:


Ver. 4.06 (Jan, 2014)

Caractéristiques techniques

Ballon d'eau chaude

Type 160 - 200 - 300 - 400 - 500 ERM

Les piétements NE doivent PAS servir au transport!

Tymo	Classe	Pertes sta-	Capacité de	Dimensions en mm								
Type	d'efficacité	tiques W	stockage L	Н	ØD	Α	В	С	E	F	G	I
160 ERM	С	61	160	1118	600	263	503	583	668	305	668	828
200 ERM	С	70	200	1340	600	263	638	718	803	305	803	1050
300 ERM	С	91	300	1797	600	263	818	898	983	305	983	1507
400 ERM	С	102	400	1832	670	320	880	960	1000	345	1000	1521
500 ERM	С	113	500	1838	750	370	930	1010	1095	370	1095	1498